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Abstract

This paper explores optimal distributive policies using a Collective approach to household
behavior. This approach allows individual preferences for each spouse, which is crucial when
examining policies targeted to women, like Mexico’s Prospera or Brazil’s Bolsa Família programs.
We assume the spouses’ decisions follow a Nash-bargaining procedure with internal threat points.
We show that the taxation principle does not apply, meaning that the optimal tax schedule is
dominated by the optimal mechanism. This is because a single tax schedule cannot optimally
influence threat points and induce households to choose desired allocations simultaneously. By
permitting couples to opt for joint or individual tax filing, we significantly increase the set of
implementable allocations. The central role of threat points motivates an extension of the model in
which marriage market negotiations partially determine threat points after marriage. This extension
endogenizes the distribution of couples and formalizes how general equilibrium considerations and
social norms affect bargaining power within a couple. The extended model generalizes previous
approaches to the optimal taxation of couples. Finally, we parametrize and calibrate this model to
empirically evaluate the relevance of our theoretical findings. The ability to influence threat points
has large effects on equilibrium allocations and the evaluation of optimal policies. Keywords:
Mechanism design; Collective Households; Taxation Principle. JEL Codes: D13; H21; H31.

1 Introduction

THE 1979 UK Reform of Child Benefits is but one example of policy interventions that change the

relative income of women versus men with the explicit purpose of empowering women. These

reforms that transfer money ‘from the pocket to the purse’ are inspired by mounting evidence that the

identity of the resource recipient affects household decisions —Thomas (1990); Browning et al. (1994);
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Browning and Chiappori (1998); Browning and Gørtz (2012); Duflo (2003); Almås et al. (2018);

Armand et al. (2020). The same type of evidence informs the design of most current conditional cash

transfer programs as Prospera in Mexico (originally Progresa, then Oportunidades) and Bolsa Família

in Brazil.

This type of evidence rejecting income-pooling is not compatible with the Unitary approach to

household behavior, under which multi-person households are treated as if they were individuals.

Yet, in contrast with evidence and policy practice, only recently have the theoretical analyses of

redistribution policies begun moving away from Unitary household models. And while important

advances have occurred—Gayle and Shephard (2019)—the connection between evidence-based policy

and theoretical approaches capable of exploring the limits of distributive policy is still wanting. The

goal of our work is to fill the gap by replacing the unitary household model with a Collective model—

Apps and Rees (1988); Chiappori (1988, 1992)—that is capable of rationalizing the evidence while

retaining enough structure to assess optimal policy in the Mirrlees’ tradition.

We specialize the Collective model by building on Lundberg and Pollak’s (1993) view of a

household’s decision process. Married persons are assumed to decide following a Nash-bargaining

procedure with internal threat points: the disagreement utilities attained within the marriage but with

spouses behaving non-cooperatively. This model is, in particular, compatible with the findings in

Lundberg et al. (1997); Almås et al. (2018); Armand et al. (2020) for reform or policies that only

change policy for married agents leaving intact the incentives for singlehood. As we show, it also

allows us to use traditional mechanism design tools and explore the limits of distributive policies.

Before we describe our main findings, we must point to recent works that do take the multi-person

nature of households seriously. They typically take for granted the set of policy instruments—e.g.,

Gayle and Shephard (2019)—or assume that policy cannot affect the distribution of power across

spouses—Kleven et al. (2009); Alves et al. (2021); Golosov and Krasikov (2023). This paper, instead,

lays the foundation for analyses of redistribution policies with multi-agent households in the Mirrlees’

tradition. As in Mirrlees (1971), we use a direct mechanism to characterize the set of implementable

allocations and consider when the allocation can be decentralized through suitably designed tax

schedules, the taxation principle. We first show how to define the type for married couples so that the

revelation principle remains valid in our setting. This allows us to provide a simple characterization for

the set of incentive-feasible allocations. However, the taxation principle fails; not all incentive-feasible

allocations can be decentralized with a budget set.

The taxation principle failure is due to the budget set playing two distinct roles. First, as usual, they

induce choices conditional on households’ objectives. Second, they affect these objectives through

threat points, which are spouses’ disagreement utilities when the couple behaves non-cooperatively. A

single instrument for these two objectives makes decentralization with a single budget set sub-optimal.

In particular, we show how adding the option to file either jointly or individually expands the set
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of implementable allocations relative to a unique tax schedule. This filing option is similar to the

one already in place in the U.S. tax system. We also offer conditions under which the full set of

incentive-feasible allocations can be implemented with filling options.

To simplify our exposition, we first present our main theoretical results assuming a fixed distribution

of couples and ignoring the impact of redistribution policies on the marriage market. Perhaps more

importantly, we disregard the impact of marriage market conditions on the distribution of power. We

remedy this by expanding our model to include the marriage market. By doing so we endogenize

the distribution of households and let the rules for the disagreement game within each household be

partially chosen at this stage. While Lundberg and Pollak (1993) emphasizes the role of social norms

for the disagreement game, our approach allows marriage market conditions to influence allocations in

marriage. Our approach, therefore, generalizes both Pollak’s (2019) Bargain-in-Marriage and Choo

and Siow’s (2006) and Gayle and Shephard’s (2019) (imperfectly) transferable utility models.

One thing we rule out in our analysis is the extreme form of commitment (or contract completeness)

that allows all conflicts to be resolved at the marriage market stage. Or taken from the opposite angle,

while our approach allows for choices at the marriage market stage to affect threat points, post-marriage

bargaining still plays a role.1

The rest of the paper is organized as follows. In Section 2, we present our model of household

behavior under the assumption that the distribution of couples and the mapping from transactions to

threat points is exogenous. Section 3 contains the main theoretical results of our paper. The household

model is generalized in Section 4 to endogenize the role of marriage markets. In Section 5, we specify

a particular parametric model and calibrate it to the U.S. economy to provide a quantitative assessment

of the forces identified in our theoretical model. Section 6 concludes.

Literature Review

The main goal of this paper is to offer a framework for studying optimal distributive policies for

multi-person households in the Mirrlees’ tradition.

The literature on optimal taxation of multi-person households started with Boskin and Sheshinski

(1983). They considered linear parametric taxes applied to a unitary household and, since labor

earnings are assignable and women have higher labor elasticities, they derived optimal taxes that are

lower for wives. Boskin and Sheshinski (1983) relied on a unitary framework and did not take into

account that the household behavior need not have a normative content; Apps and Rees (1988) was the

first to address this issue, which they called dissonance.
1As suggested by Lundberg and Pollak (1993), "The marriage market will wholly undo any redistributive effects if

prospective couples can make binding, costlessly enforceable, prenuptial agreements to transfer resources within the marriage;
dowry and bride price can, under certain circumstances, be interpreted as examples of practices that facilitate such Ricardian
equivalence. If binding agreements cannot be made in the marriage market and we think this is the relevant case for advanced,
industrial societies child allowances may have long-run distributional effects."
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An extension of this literature has characterized optimal non-linear taxes for unitary households—

e.g. Kleven et al. (2009); Immervoll et al. (2011); Cremer et al. (2016); Golosov and Krasikov (2023);

and Alves et al. (2021). The main technical difficulty has been that modeling a multi-person household

naturally leads to considering multi-dimensional types, which complicates the characterization of

optimal policies within a Mirrlees’ framework. To overcome this issue, Kleven et al. (2009) assumed

that primary earners make intensive margin decisions while secondary earners only make extensive

margin decisions, Immervoll et al. (2011) only considered extensive margin decisions, Cremer et al.

(2016) used a stylized model with finite types, and Alves et al. (2021) considered only joint taxation

and identical iso-elastic preferences. Golosov and Krasikov (2023) shows that the optimal tax schedule

for couples solves a second-order differential equation and provides a characterization of this solution.

They all abstract from the interaction between policy and the intra-household distribution of power.

Another extension has departed from the unitary framework and has considered the impact of

policies on the power within households. To the best of our knowledge, Alesina et al. (2011), Bastani

(2013) and Gayle and Shephard (2019) are the only attempts to characterize optimal taxes for Collective

households—as defined by Browning et al. (2006). Alesina et al. (2011) and Bastani (2013) considered

a Nash-bargaining household model with singles’ utilities as threat points. They both assumed

quasi-linear utilities and linear tax schedules; Alesina et al. (2011) abstracted from heterogeneous

productivity, while Bastani (2013) assumed that spouses in a couple are equally productive. They

both abstracted from marriage considerations.2 In contrast, Gayle and Shephard (2019) assumed that

threat points are defined by binding contracts that clear the market at the marriage stage: spouses can

credibly promise to forgo power within the marriage to get better matches at the marriage market.

Differently from Gayle and Shephard (2019), we assume that not all disputes between spouses are

solved at the marriage market stage. This form of contract incompleteness leads to the use of internal

threat points, a feature of bargaining models that allows us to accommodate the empirical evidence in

Armand et al. (2020) and to rationalize the design of income-support programs as Bolsa Família in

Brazil and Oportunidades in Mexico, neither of which can be done with Gayle and Shephard’s strong

commitment assumption.

Internal threat points, the utilities attained by spouses when they fail to agree on a course of action,

behaving non-cooperatively instead, were first proposed by Lundberg and Pollak (1993). While a

growing empirical literature has supported the relevance of internal threat points—e.g. Mazzocco

(2007) and Armand et al. (2020)—and a theoretical and experimental literature has justified it—e.g.

Bergstrom (1996); Binmore (1985); Binmore et al. (1989)—our approach does not disregard the

influence of marriage market conditions for the distribution of power between spouses. By assuming

contract incompleteness at the marriage market stage, we encompass both the full commitment—Choo

and Siow (2006); Gayle and Shephard (2019)—and the bargaining-in-marriage (BiM) approaches—
2Bastani (2013), in his quantitative analysis, relaxed the quasi-linearity assumption and considered internal threat points.
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Pollak (2019)—as special cases of our approach.

As far as we know, our work is the first extension of mechanism design to Collective households.

This extension allows us to discuss how auxiliary non-rate policies impact allocations, whereas the

previously cited works, could not. In his seminal contribution, Mirrlees (1971) pioneered the idea that

optimal distributive policies should be found by making explicit the information structure that precluded

the attainment of first-best allocations. In the next few years, the notion of incentive compatibility—

Hurwicz (1972)—and the revelation principle—Myerson (1979); Dasgupta et al. (1979); Harris and

Townsend (1981)—provided the language for mechanism design. If on the one hand, the revelation

principle allowed one to characterize the full set of incentive-feasible allocations thus establishing the

limits to redistribution, the taxation principle—Hammond (1979); Guesnerie (1981)—guaranteed that

a single budget set could decentralize these allocations. All these fundamental results were derived

under the assumption that individuals are single or that multi-person households can be treated as if

they were individuals; the so-called Unitary model. We prove a version of the revelation principle for

our household model but find that the taxation principle no longer applies.

2 Model with Exogenous Marriage

Our framework builds on Lundberg and Pollak’s (1993) approach to household decision-making,

where spouses follow a bargaining protocol satisfying Nash’s (1950) axioms, and threat points are the

utilities from a non-cooperative Nash equilibrium within marriage. These internal threat points, as

opposed to divorce threats, allow for policy changes to affect a spouse’s bargaining power even if it is

irrelevant to his or her utility as a divorcee, which is consistent with the empirical evidence—Lundberg

et al. (1997); Almås et al. (2018); Armand et al. (2020).

In this section, we assume that the marriage distribution is given and unaffected by changes in

policy.3 Furthermore, the bargaining power in a household is only a function of their disagreement

transactions and policy-invariant social norms; no external consideration, like the policy impact on

other couples, affects the couple’s decision.

With this assumption, we can prove our main results in the simplest setting. In Section 4 we

extend the model to allow for policy to affect the marriage market and, in turn, for it to affect threat

points. The main results from the current section survive with (essentially) identical proofs even if the

marriage distribution is endogenous. Our extended model has the BiM, the Choo and Siow (2006),

and the Gayle and Shephard (2019) models as special cases.
3We also abstract from single agents since it adds nothing to the results under the assumption of exogenous distributions.
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2.1 Environment

Households have two identifiable spouses, i = f,m, with identical preferences over private consump-

tion, c, and leisure, l: v(c, l).4 Each spouse has an endowment of (c = 0, l = 1), and is identified

by their gender i and productivity wi ∈ W ⊂ (0,∞). We denote the household with productivities

wf and wm by the ordered pair w = (wf , wm) ∈ W ×W . In the rest of the paper, we follow the

convention that boldface variables refer to the household, while non-bold variables to an individual

spouse. Under the current assumption of exogenous marriage, the fraction of w households is fixed

and denoted by µ(w).

Each spouse provides labor zi to the market and receives earnings yi, and the pair xi = (yi,−zi)

denotes i’s transaction. Negative numbers denote a transaction from a spouse to the market, while

positive numbers denote the opposite. We denote the household’s transactions by x = (xf , xm) =

(yf ,−zf , ym,−zm). Each spouse’s transaction is restricted by their endowment, yi ≥ 0 and 0 ≤
zi/wi ≤ 1.

Additionally, household transactions can be restricted by taxes (or more general institutional

environments). To formalize these restrictions, we assume that the spouses choose messages or reports,

s = (sf , sm) ∈ S × S, which are mapped into transactions by x : S × S 7→ X ×X . This restricts

transactions to be decentralized in the sense that a household’s transactions do not depend on other

households’ messages. The distinction between messages and transactions will be useful when we

formalize the mechanism design problem.5

The set of all feasible transactions is, therefore,

X = {x ∈ X ×X | ∃(sf , sm) ∈ S × S such that x = x(sf , sm)} .

Finally, given x = (yf ,−zf , ym,−zm), the (conditional on x) utility possibility set for a w-

household is

U(x | w) :=

{
(uf , um)

∣∣ (uf , um) = (v(cf , lf ), v(cm, lm)) with

cf + cm ≤ yf + ym, lf = 1−
zf
wf

, lm = 1− zm
wm

}
,

4In Section 4, we allow for public goods and household production, but we abstract from these considerations in this
section for simplicity.

5A tax schedule is framed in this formulation by taking S = X , which equates a message to a suggested transaction for
each spouse. The map x then can be defined as x(x) = x if the transactions are feasible according to the tax schedule and
zero otherwise. For more details, see Section 3.3. Independence with respect to other households’ reports characterizes a tax
schedule and is compatible with feasibility for any mechanism under the assumption of assignment uncertainty as explained
by Roberts (1984).
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2.2 The Household Decision Process

Spouses have two decisions to make in our model. They decide their message si, which generates the

household’s transactions via the function x(sf , sm), and decide how to split their earnings yf + ym

into individual consumptions, cf and cm.

The decision-making process of a household depends on whether spouses are in agreement or

disagreement. When in agreement, the spouses Nash-bargain to decide their messages and allocations,

which are the decisions observed in equilibrium. On the other hand, when in disagreement, each

spouse chooses messages non-cooperatively to maximize his/her utility. The utilities that arise as the

non-cooperative outcome of these decisions define the threat points of the Nash-bargaining used in the

agreement state.

Agreement State Given disagreement utilities ū(w) = (ūf (w), ūm(w)), which will be defined

in (3), a w-household chooses messages (sf , sm) cooperatively to maximize the Nash product,(
uf − ūf (w)

)(
um − ūm(w)

)
, i.e., the household solves

max
(sf ,sm)∈Sf×Sm

{
max

(uf ,um)∈U(x(sf ,sm)|w)

(
uf − ūf (w)

)(
um − ūm(w)

)}
. (1)

The solution (s∗f , s
∗
m) defines the household’s transactions and utilities in equilibrium,

x(w) = x(s∗f , s
∗
m) and u(w) = argmax

(uf ,um)∈U(x(s∗f ,s
∗
m)|w)

(uf − ūf (w))(um − ūm(w)).

Disagreement State For the disagreement state, we assume there is a function ū( · | w) : X ×X 7→
U ×U that maps transactions into a pair of disagreement utilities such that ū(x | w) ∈ U(x | w). We

abstract from the details leading to this function and, instead, only impose that the function ū( · | w)

does not depend on the message space, S, or the function x mapping messages to transactions. In

other words, disagreement utilities only depend on disagreement transactions and are independent of

the institutional environment (or mechanism) leading to those transactions.6

Given ū(· | w) = (ūf (· | w), ūm(· | w)), each spouse decides their message to the planner

non-cooperatively to maximize their disagreement utility ūi(· | w). That is, the wife chooses sf to

max
sf∈S

ūf(xf (sf , sm) | w) , (2)

6While our theoretical results do not depend on specifying how these rules are determined, these functions play a crucial
role in the practical implementation of proposed policies. We will, therefore, impose more structure for the quantitative
exercises. Importantly, in Section 4, we endogenize the function ū, by assuming that, beyond social norms, conditions in
the marriage market affect this function through commitments that allow for expected utility transfers. This allows us to
formalize the general equilibrium notion discussed by Lundberg and Pollak (1993).
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taking her husband’s choice, sm, as given. Similarly, the husband chooses sm to maximize his

disagreement utility taking sf as given. Let (ŝf , ŝm) be a (pure-strategy) Nash equilibrium of this

game, then threat points are defined as

ū(w) =
(
ūf (w), ūm(w)

)
:= ū

(
xf (ŝf , ŝm), xm(ŝm, ŝf );w

)
. (3)

Remark. Our focus on pure-strategy equilibria is for notational convenience only since we could

define the threat point as the expected value over the mixed-strategy equilibrium. Similarly, if there are

multiple Nash equilibria, we assume the spouses agree on the frequency of each equilibrium and take

the expected disagreement utility over this frequency as the threat point.

3 Mechanisms Design

Proofs for this section are in Appendix A.

The message set, S, and the mapping from messages to transactions, x, define a mechanism.7

Definition. A mechanism, M, consists of a message space, SM, and an outcome function, xM :

SM × SM 7→ X ×X mapping messages from both spouses into transactions.8 The space of possible

transactions induced by M is denoted by XM = xM (SM × SM), which is a subset of the set of all

possible transactions, X.

In all that follows, we index message sets, utility possibility sets, disagreement utilities, etc. by the

mechanism’s name.

Definition. The allocation implemented by M, AM, is the set of transactions and utilities for every

household,

AM :=
{
xM(w),uM(w)

}
w
,

that arise through the decision process described by equations (1) and (2).

Remark. Many disagreement utilities can implement the same transactions and agreement utilities.

Since the disagreement state is off the equilibrium path, it would be too stringent to add disagreement

transactions and utilities as part of the definition of an allocation.

A particularly important example of a mechanism is a tax schedule, which we formally define in

Section 3.3.
7Also referred to as a game form in the literature, e.g. Roberts (1984); Guesnerie (1998).
8It is without loss of generality to assume that the message space for each spouse is the same since if we have Sf and

Sm, we can take S = Sf ∪ Sm and assume that x(sf , sm) = 0 whenever si ∈ S \ Si.
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3.1 Revelation Principle

In our definition of a mechanism, there is the implicit constraint that the planner does not know a

priori the household members’ productivities nor if spouses are in agreement or disagreement; only

the household members themselves know it. For this reason, productivities and states must be elicited

by the mechanism.

In this section, we show that this information defines the spouses’ type and that a revelation

principle holds: any allocation implemented by a general mechanism can be implemented by a direct

mechanism asking productivities and states from each spouse.

Definition. In a w-household, spouse i type, τi is a triplet including their productivity, their partner’s

productivity, and the household state. That is

τi = (wf , wm, t), t ∈ {a, d}

where t = a if the household is in agreement or t = d if they are in disagreement. Therefore, in a

household, spouses share the same type.

Definition. A direct mechanism, D, is a mechanism for which the message space is the set of possible

types, SD := W ×W × {a, d}.

The next result extends the classical revelation principle—Myerson (1979); Dasgupta, Hammond,

and Maskin (1979); Harris and Townsend (1981)—to our multi-agent setting.

Proposition 1 (Revelation Principle). Let AM = {xM,uM} be the allocation implemented by

M. Then there exists a direct mechanism, D, such that spouses truthfully report their types, and

AD = AM.

The proof is in Appendix A and is standard; nevertheless, this proposition is significant as it shows

that our definition of type is the correct one. An alternative interpretation of the result is that our

definition of type has the minimal information necessary for the revelation principle to hold.

Remark. Since spouses act cooperatively in agreement, implementable allocations must be incentive-

compatible with the household’s objective. Therefore, even though spouses in a household share the

same type, the planner cannot explore this correlation to implement any (feasible) allocation as in

Crémer and McLean (1988).

Remark. The disagreement game may have more Nash equilibria under the direct mechanism than

under the original mechanism. This is a standard issue in mechanism implementation and, following

the literature, we assume that the Nash equilibrium that would be played in disagreement (or the

frequency of each Nash-equilibria) is the same as in the original mechanism.
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3.2 Incentive-feasible Allocations

There are two restrictions to implementable allocations. The first (and most relevant for our purposes)

is the incentive-compatibility restriction. The other restriction is the technological feasibility, which

we represent with a function G such that an allocation AM := {xM,uM} is feasible if and only if

G

∑
w

∑
i=f,m

xi,M(w)µ(w)

 ≤ 0,

where µ(w) is the proportion of household with productivity w.

An allocation from the direct mechanism D, AD = {xD,uD}, with xD(w) = xD(w, a,w, a)

for all w, is incentive-feasible if:

i) Incentive Compatibility (in disagreement) — For every w-households, truth-telling is a Nash-

equilibrium for the disagreement game: (w, d) ∈ argmaxw′, t′ ūf (xD(w
′, t′,w, d);w) and

(w, d) ∈ argmaxw′, t′ ūm (xD(w, d,w′, t);w).

ii) Incentive Compatibility (in agreement) — Given the disagreement utilities, uD(w), for every

w-households truth-telling is optimal in the agreement state:

(w, a,w, a) ∈ argmax
w′,t′,w′′,t′′

VD(xD(w
′, t′,w′′, t′′);w),

where

VD(x;w) := max
(uf ,um)∈U(x|w)

(
uf − ūf,D(w)

)(
um − ūm,D(w)

)
(4)

is the w-household Nash-bargaining objective function over transactions instead of utilities.

iii) Feasibility — G
(∑

w

∑
i=f,m xi,D(w)µ(w)

)
≤ 0.

Remark. In (iii), feasibility is only required in agreement because the disagreement allocation does

not arise in equilibrium.

Remark. Nowhere in the definition or the proofs did we specify the dimensionality of x or the

technology mapping transactions to utility. It is also straightforward to accommodate a richer type-

space beyond the productivity w. The model is, therefore, general enough to accommodate greater

heterogeneity across households as well as public goods and home production. In Section 5, we rely

on this level of generality to incorporate these features in a fully specified household model.

Finally, another characterization of (incentive-feasible) allocations is given below
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Proposition 2 (Implementable Allocations). With differentiable utility functions, an allocation AM can

be implemented by another mechanism N if the equilibrium transactions are the same, xN(·) = xM(·),
and, for every household w, their disagreement utilities under N satisfy

ūN(w) = puM(w) + (1− p)ūM(w)

for some p ≤ 1. If ūM(w) ̸= uM(w), then this condition is also necessary.

With a characterization of all incentive-feasible allocations, it is natural to ask which allocations

can be implemented with institutional environments simpler than a direct mechanism, e.g., tax systems.

3.3 Tax schedules as Mechanisms

A tax schedule, T , maps labor supply decisions, z, to feasible after-tax earnings, y. We say that a

transaction is in the budget set induced by the tax schedule T if

z − y := (zf − yf , zm − ym) ∈ T (z). (5)

To formally represent a tax schedule as a mechanism T, take the messages as desired transactions, x̂f
and x̂m, so that ST = X . If these transactions respect the budget set in (5), then the planner allows the

transaction, and the outcome function is

xT(x̂f , x̂m) = (x̂f , x̂m) .

Otherwise, if the desired transactions are outside the budget set, then the planner denies the transaction

and sets xT(x̂f , x̂m) = 0.

Most tax schedules do not specify who must remit the taxes from a household or receive tax

payments; our definition is more general and allows for targeted payments. However, if a tax schedule

is invariant to this consideration, we call it an income-pooling tax schedule.

Definition. A tax schedule T satisfies income pooling if for any labor supply z = (zf , zm), and

earnings y = (yf , ym) and y′ = (y′f , y
′
m) with yf + ym = y′f + y′m it holds that

z − y = (zf − yf , zm − ym) ∈ T (zf , zm) ⇒ z − y′ = (zf − y′f , zm − y′m) ∈ T (zf , zm).

Definition. If a mechanism T can be induced by a tax schedule T , we call it a tax-schedule mechanism.

Furthermore, if T can be induced by an income-pooling tax schedule, then we call it an income-pooling

tax-schedule mechanism.

Remark. There are two important aspects of tax schedules only relevant to Collective households.
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First, which spouse receives the earnings may affect the allocation, so we cannot work only

with income-pooling tax schedules; while for unitary households, there is no loss in using only

income-pooling tax schedules.

Second, if there are multiple filing options with different tax schedules, say T1 and T2, the allocation

is not necessarily the same as providing the envelope tax schedule T ,

T (zf , zm) = T1(zf , zm) ∪ T2(zf , zm),

even if one schedule dominates the other (i.e. T2(zf , zm) ⊂ T1(zf , zm) for all zf , zm); while for

unitary households these two scenarios are equivalent.

3.4 Limits to Taxation

For individual agents, the taxation principle asserts that tax schedules are as capable as sophisticated

mechanisms: any implementable allocation can be implemented with budget-set restrictions.9

We show that this result cannot be extended to our Collective model because the household’s

induced preferences (4) vary with the mechanism (via the disagreement utilities as threat points). If

threat points were exogenous, the model would be unitary and the taxation principle would hold.

Proposition 3 (Roberts (1984)). A set of transactions {x(w)}w is implementable by a tax-schedule

mechanism T if and only if it satisfies VT(x(w);w) ≥ VT(x(w
′);w) for any w and w′.

An immediate consequence of this proposition is that the taxation principle holds for unitary

households since the threat points do not depend on the mechanism.

Corollary 4 (Taxation principle for unitary households). Suppose threat points are exogenous, in the

sense that for any mechanism M we have ūM(w) = ū(w). Then, for any M, there is an income-

pooling tax-schedule mechanism T that implements the allocation AM = {xM(w),uM(w)}w.

In particular, policies that only change the recipient of government transfers in a household (like

the 1979 UK Reform of Child Benefits ‘from the pocket to the purse’) have no impact if households

are unitary.

This explains why the literature that assumes that households are unitary does not specify the

details of who pays or receives tax transfers. For unitary households, we can always assume that tax

schedules are income pooling. When we move away from unitary models, however, income pooling is

too restrictive a constraint even in the simplest of settings.

Corollary 5 (Partial taxation principle for transferable utility). Suppose the utility function is quasi-

linear in consumption, v(c, l) = c+ h(l). Then, for any mechanism M, there is an income-pooling
9Guesnerie (1998) refers to a sophisticated (mechanism designer) and an unsophisticated (tax designer) planner, and

shows that the set of allocations that one implements are the same as the ones the other implements.
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tax-schedule mechanism T that implements the set of transactions {xM(w)}w. However, this tax-

schedule will not, in general, implement the same utilities, {uT(w)}w ̸= {uM(w)}w.

Given a tax-schedule T̃ that implements the transactions {xM(w)}w, it implements the same

utilities as the mechanism M if and only if, for every w,

uf,M(w)− ū
f,T̃

(w) = um,M(w)− ū
m,T̃

(w). (6)

For the case of transferable utility, there is some hope of a taxation principle if we allow general,

non-income-pooling tax schedules because we can divide the problem into two steps. First, find a

tax schedule that implements the same transactions as the mechanism. Then, for the disagreement

transactions induced by the tax schedule (which do not need to be the same as the ones induced by the

mechanism), judiciously split the total earnings ȳf + ȳm so that (6) is satisfied.

However, this may not be possible even in the transferable utility case because who receives the

earnings is only part of how disagreement utilities are decided. To implement the same allocation as a

mechanism, the planner may need to provide contradictory labor supply incentives in the agreement

and disagreement states. The next (extreme) example makes the point clearer as the planner wants

husbands to not work in disagreement.

Example 3.1 (Taxation principle failure). Consider an economy where women have zero productivity,

wf = 0, and there is a continuum of men with productivity uniformly distributed in [0, 1]. Each agent

has utility v(c, l) = c + log(l), and the planner has a preference for equality with welfare function10

W ({u(wm)}wm) =

ˆ 1

0
log(uf (w)) + log(um(w)) dw

In disagreement, consumption is split according to

c̄i =
z̄i

z̄f + z̄m
(ȳf + ȳm) =

0 if i = f

z̄m − T (z̄m) if i = m
.

It follows that ūf = 0.

In agreement, given threat points ū = (0, ūm) and a tax schedule T (z), the household in agreement

solves the Nash-bargaining objective,

max
cf ,cm,zm

cf ·
[
cm + log

(
1− zm

wm

)
− ūm

]
,

subject to cf + cm = zm − T (zm). For this specification, the optimal zm does not depend on ūm

10Since only men vary in productivity, we index households by wm instead of w = (0, wm).
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and uf (wm) = um(wm)− ūm.11 Since the planner dislikes inequality, the optimal threat point has

ūm = 0.

However, to implement ūm = 0, the planner would need to heavily tax labor supply, which would

not be optimal. A tax schedule is not enough to both implement the optimal threat points and the

optimal transactions conditional on threat points. And, in fact, any tax-schedule mechanism implements

allocations with

uf (wm) = ūf (wm) = 0,

and welfare is minus infinity in this example. Notice that, since labor supply is independent of threat

points, the observed transactions, (ym,−zm), are the same no matter the disagreement utilities, but

the allocation of (agreement) utilities is vastly different.

This example suggests a potential role for the use of two separate schedules, one for the disagree-

ment game and another one for choices in agreement.

Filing Options If we add to T a second schedule T as a filing option we get a two-schedule tax system.

Then, we can map the tax system to a two-schedule tax mechanism with a choice set Si := X ×{a, d}.

If both spouses report a, then they use T ; but if one of them reports d, then they must use T .

With endogenous threat points, a tax-schedule mechanism may not suffice, and a two-schedule

tax mechanism can be used to target threat points more precisely. Intuitively, the planner has two

instruments for two objectives: T to induce choices conditional on threat points, and T to induce better

threat points. The proposition below shows that if no spouses have the same earnings in disagreement,

a two-schedule tax system is sufficient to implement any (incentive-feasible) allocation.12

Proposition 6. Given a mechanism M, suppose that the disagreement labor earnings, z̄f,M(·) and

z̄m,M(·), are both one-to-one, that is we can recover w from each spouse separately, then there is a

two-schedule tax system that implements AM.

However, even a two-schedule tax system may not implement all incentive-feasible allocations.

For example, if two wives have low productivity and decide not to work in disagreement, then a tax

mechanism cannot costlessly separate their husbands, while a direct mechanism can.
11Since women do not work,

uf (wm) := cf (wm) and um(wm) := cm(wm) + log

(
1− zm(wm)

wm

)
12These conditions are only sufficient. A planner could implement an allocation in which spouses from different households

had the same earnings if their partners did not envy each other.

14



3.5 Implementable Threat Points

In the previous discussion, we explored the limitations of a tax system. It is also worth exploring

what limits the direct mechanism from implementing threat points. According to Propositions 7 and 8

below, the only restriction is that no household in agreement should envy a disagreement transaction;

otherwise, the planner is free to act without any constraints because spouses in disagreement behave

non-cooperatively.

Proposition 7. Given a mechanism M and any possible transaction for this mechanism, x ∈ XM,

there is a mechanism N that changes the w-household’s disagreement utility to ūN(w) = u(x | w),

without affecting the other households’ allocations: for all w′ ̸= w, xN(w
′) = xM(w′) and

uN(w
′) = uM(w′).

The non-cooperative behavior of spouses in disagreement allows for a mechanism to affect threat

points at zero cost. The only restriction is that no couple in agreement would, instead, announce to be

in disagreement, and Proposition 7 provides a sufficient condition for this to be the case. In contrast,

a necessary condition is that disagreement transactions cannot be strictly larger than any agreement

transactions.

Proposition 8. Given a mechanism M, if ū can be implemented as disagreement utility for a w-

household without affecting the other households’ allocations, then there is a feasible transaction

x ∈ X such that ū = ū(x | w) and x ̸> xM(w′) for all w′ ̸= w.

3.6 Better Allocations

From Section 3.5, we know the planner enjoys much latitude to manipulate threat points. Here, we

heuristically discuss two ways in which the planner can use this latitude to produce better allocations.

Threat points and dissonance Assume that utility is transferable between spouses, which implies

that the utility frontier is linear and household transactions are independent of threat points.13 The

agreement utilities are determined by the orthogonal projection of the threat point ū = (ūf , ūm) into

the utility frontier as shown in Figure 1.

A planner who dislikes inequality within households would prefer that utility is evenly split.

However, at the original threat points, ū, the Nash-bargaining objective favors the husband. This

misalignment between the planner’s objective and the household’s objective is called dissonance.

Suppose the planner, by manipulating the mechanism or tax system, can implement ū′ in Figure 1

without affecting the equilibrium allocation for other households, then the planner has an incentive to

do so as this eliminates the dissonance.
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ū

(1.2, 1.8)
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ū′
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Figure 1: Aligning Objectives: The panel in the left displays the set of individually rational utility pairs, when the threat
point — green (light) dot — is induced by the tax schedule in place. The blue (dark) dot denotes the optimal choice for
the couple. If the planner can induce a different threat point — green dot in the right panel — a new choice distribution of
utilities is induced for the same transactions.

Threat points and the ETI. Suppose a household can choose between two possible transactions,

xg and xb (g for green and b for blue). Figure 2 shows in light green the utility frontier set if the

household receives xg, while in dark blue is the frontier if they receive xb. If the threat point is given

by ū, then the point A is the agreement utilities with transactions xg, while point B is the agreement

utilities with transactions xb as shown in the left panel of Figure 2.

Assume that the Nash-bargaining objective is the same at A and B for the threat point ū. That

is, the household’s is “indifferent” between transactions xg and xb.14 In this case, the planner cannot

increase the taxes for transaction xg without the household switching to transactions xb. However, if

the planner can implement a disagreement utility ū′ in the line connecting ū and A without affecting

other households’ transactions, then we can show that A is still the agreement utilities when transactions

are xg. Also, the agreement utilities when transactions are xb change to C and the Nash-bargaining

objective for A is now strictly larger than for B. That is, the household strictly “prefers” xg over xb

for the new threat point, which creates room for a larger tax reform.15

Essentially, by moving along the curve, we are reducing the flexibility that a couple has to substitute

the utility of one spouse for the other—Figure 3. We are in practice changing the relevant elasticities.

This reform is useful whenever the original allocation is distorted due to incentive provision, which we

formalize in Lemma 12.

One question that one may have is whether the theoretical findings regarding the taxation principle

are quantitatively relevant. To have a sense of how important changes in threat points are, in Section
13See Lemma 9 in the appendix.
14Recall that axiom ‘Preference for symmetry’, as defined by Zambrano (2016), substitutes for ‘symmetry’ to deal with

the non-convexity in the utility possibility sets.
15See Lemma 10 in the appendix for the details.
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Figure 2: Breaking Indifference: The green (light) curve is the frontier of the household’s utility possibility for a true
report. The blue (dark) curve is the utility frontier for the same couple for the case in which a false report θ′ ̸= θ is made.
Point B denotes the utility pair the couple would attain in case of a lie. If the threat points changes from ū = (ūf , ūm) to
ū′ = (ū′

f , ū
′
m) equilibrium choices are not changed, yet the deviation utility pair changes from B to C.

ū

ū′
ū′′

U

U ′
U ′′

uf

um

Figure 3: Changing Elasticities. The figure shows
how the set of utility pairs which are preferred to
(u∗

f , u
∗
m) shrinks as we move along the curve connect-

ing point a to point (u∗
f , u

∗
m).
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5 we calibrate a model of the U.S. economy, taking into account the existence of filing options, and

evaluate the optimal taxes (and filing options) under different restrictions to the tax system. To take

into account the crucial impact of marriage market conditions on the distribution of power between

spouses we must first endogenize the household formation.

4 Taking Marriage Markets into Account

In this section, we introduce a marriage market to our analysis, allowing market conditions to affect the

distribution of households and spouses’ bargaining power. The theoretical results from the previous

section survive this extension with minor modifications. Specifically, the Revelation Principle still

applies, while the Taxation Principle does not. The characterization of implementable allocations

remains essentially unchanged but incorporates the mechanism’s effects on both the distributions of

households and the disagreement mappings from transactions to utilities. These theoretical results are

relegated to Appendix B.

In the marriage market stage, individuals receive a public signal w̃ ∈ W̃ := {w̃1, . . . , w̃T }
correlated with their future productivity w, which is unknown at this stage. Following Choo and

Siow (2006), agents make marriage decisions anticipating their expected future utility when single

or married, which will be a function of their signal w̃ and the prospective partners’ signals. The map

from transactions to disagreement utilities adjusts to guarantee that the marriage market clears. This

summarizes pre-nuptial contracts or any other form of pre-nuptial negotiations that could shift the

bargaining power in marriage.

More formally, there is a set Ū of possible disagreement functions ū(·|·) : X2 ×W 2 → U2. This

set does not depend on the mechanism M.16 For each possible pair of signals w̃ = (w̃f , w̃m), there is

a disagreement function ūw̃(·|·) ∈ Ū . In particular, two couples with the same realized productivities

w can have different disagreement utilities if they had different signals during the marriage market

stage. Given a mechanism M, we can define for each couple with productivities w and signals w̃ their

disagreement utilities ūw̃
M(w) and agreement utilities uw̃

M(w) as in Section 2.2. At the marriage stage,

each prospective spouse knows the expected utilities for each pair, defined as

Eui,M(w̃) := E
[
uw̃i,M(w) | w̃

]
,

where the expectation is over the productivities w. They also know their expected utility as singles

Eui,M(w̃i). As in Choo and Siow (2006), there are (private, idiosyncratic) shocks ε = (ε0, . . . , εT )

incorporating non-material aspects of a marriage, so that each woman f with signal w̃f chooses their

16We claim not that the set is independent of institutions. We are simply not including these institutions among those that
can be changed in the analysis. This assumption is the natural generalization of the assumption that the mechanism only
affects the disagreement utilities through transactions.

18



matches based on the utilities

Euf,M(w̃f ) + ε0f , Euf,M(w̃f , w̃
1) + ε1f , · · · , Euf,M(w̃i, w̃

T ) + εTf .

We further assume that εtf are i.i.d. extreme value type 1 with scale σ, centered at ξw̃f ,w̃t , which

implies that the average demand from a woman with signal w̃f for men with signal w̃m is17

Df,M(w̃f , w̃m) :=
exp( 1σ (Euf,M(w̃f , w̃m) + ξw̃f ,w̃m))

exp( 1σEuf,M(w̃f )) +
∑T

t=1 exp(
1
σ (Euf,M(w̃f , w̃t) + ξw̃f ,w̃t))

.

The demand from men, Dm,M(w̃f , w̃m), follows the same stochastic assumptions.

Marriage Market Equilibrium Given a mechanism M, the marriage market clears if there are

disagreement functions ūw̃(·|·) ∈ Ū , such that for every signal pair (w̃f , w̃m),

Df,M(w̃f , w̃m) = Dm,M(w̃f , w̃m).

This market clearing process is inspired by the model of Gayle and Shephard (2019) where marital

bargaining weights adjust to clear the marriage market. However, in their model, the bargaining power

is fully determined in the marriage market and there is no room for bargaining in marriage.

Under mild restrictions on the mechanism and the set of feasible disagreement functions, Ū , there

is a unique equilibrium distribution, πMM(·), that clears the market,

πMM(w̃f , w̃m) = Df,M(w̃f , w̃m) = Dm,M(w̃f , w̃m).

This existence and uniqueness result relies heavily on the formalization of matching models with

imperfectly transferable utility of Galichon, Kominers, and Weber (2019) and is further discussed in

Appendix B.2.

Remark. The restriction that the disagreement function is determined at the marriage stage excludes

contracts contingent on productivities. This restriction—reminiscent of incomplete contracts as in

Grossman and Hart (1986)—allows for some bargaining to happen in marriage; otherwise, agents

could contract directly on threat points, and all bargaining would happen before marriage.18

17The vector ξ = (ξw̃f ,w̃m) represents unobserved utility gains from certain matches. For example, if ξw̃f ,w̃m are higher
when w̃f = w̃m, then there is a preference for assortative matches beyond any material aspects. The shock for staying single,
ε0, is centered at 0.

18A similar point is raised by Lundberg and Pollak (1993), namely that transfers in the marriage market could undo
policies that aim to shift funds from one spouse to another in the marriage. See Pollak (2019) for further discussion on the
distinction between Biding Agreements at the Marriage Market and Bargaining-in-Marriage.

19



5 A Fully Specified Household Model

In this section, we provide a parametric household model by specifying preferences, technology, and,

more importantly, the mapping from transactions to disagreement utilities.

Goods, Preferences, and Technology Individuals have a productivity w ∈ W and are endowed

with 1 unit of time, which can be spent in home production, h, labor supply, z/w, or leisure. Utility

depends on consumption, c, public goods, h1 and h2, and leisure, l. It is also affected by the presence

of children or not, b ∈ {k, nk}, and represented by vb(c, h1, h2, l),

vb(c, h1, h2, l) := log(c) + βb
1

h
1−γb

1
1 − 1

1− γb1
+ βb

2

h
1−γb

2
2 − 1

1− γb2
+ βℓ

l1−γℓ − 1

1− γℓ
.

Households can be a couple or a single agent. Given transactions, x = (y,−z), a single agent with

productivity w faces the restrictions

c ≤ y − fcb1[z > 0], h1 + h2 ≤ h, l ≤ 1− z

w
− h,

where the highlighted term represents constant fixed costs of working, which are higher if a household

has children, 0 < fcnk ≤ fck.

For couples, a w-household with transactions x = (yf ,−zf , ym,−zm) faces the restrictions

cf + cm ≤ yf + ym − FCk,t
z , h1 ≤ hf , h2 ≤ hm,

lf ≤ 1−
zf
wf

− hf , and lm ≤ 1− zm
wm

− hm. (7)

The highlighted terms in Equation (7) incorporate gender specialization; for couples, women contribute

to public good h1, while men to h2.19 Fixed costs FCk,t
z can depend on the couple agreement state,

t = a or t = d. We assume that couples in disagreement always pay the fixed costs,20 while couples in

agreement pay the fixed costs only if both spouses are working,

FCb,d
z = fcb, FCb,a

z = fcb1[zf > 0, zm > 0].

Labor supply in agreement A couple in agreement has four possible labor supply outcomes in

the extensive margin: neither work, z = (0, 0), only one works, z ∈ {(0, 1), (1, 0)}, or both work,

19This assumption is inspired by the ‘separate spheres’ concept of Lundberg and Pollak (1993), which provides a
formalization to socially enforced gender roles within the marriage. Public goods are also a natural way to incorporate gains
from marriage and the potential inefficiencies of a disagreement state.

20This assumption guarantees that if the equilibrium selection in disagreement is continuous with respect to parameters,
then the disagreement utility will be as well.
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z = (1, 1). To avoid discontinuities in the household behavior as we calibrate the parameters, we

assume that couples decide between which extensive margin happens with probability

(uzf − ūf )(u
z
m − ūm)∑

z′(u
z′
f − ūf )(uz

′
m − ūm)

.

where uzi is the utility of spouse i when the couple in agreement is constrained to have z as their

extensive labor supply margin, that is (1[zf > 0],1[zm > 0]) = z. The sum in the denominator is

only over z with a positive Nash product.

Disagreement State Consider a household with productivity w, fertility b ∈ {k, nk}, and marriage-

market signals w̃. Given transactions x, their disagreement utilities ūw̃(x|w, b) are defined by

ūw̃f (x|w, b) := vb
(
c̄f , h̄

b
1, h̄

b
2, 1− h̄b1 −

zf
wf

)
and

ūw̃m(x|w, b) := vb
(
c̄m, h̄b1, h̄

b
2, 1− h̄b2 −

zm
wm

)
,

where (h̄b1, h̄
b
2) solves

βb
1

(
h̄b1

)−γb
1 − βℓ

(
1− h̄b1 −

zf
wf

)−γ3

= 0 and βb
2

(
h̄b2

)−γb
2 − βℓ

(
1− h̄b2 −

zm
wm

)−γ3

= 0,

and

c̄f = (ᾱw̃ + δ(x))(yf + ym), c̄m = (1− ᾱw̃ − δ(x))(yf + ym), (8)

The term ᾱw̃ is the channel used at the marriage market to contract on a disagreement function to clear

the marriage market. The term δ(x) allows for the redistribution of earnings to affect the consumption

share.21

Fertility and Productivity Transitions After agents exit the marriage market either married or

single, there is an exogenous fertility shock; singles with signal w̃ have children with probability

πk(w̃), and couples with probability πk(w̃f , w̃m). After fertility transitions, each agent draws their

productivity wi with probability πw(wi|w̃), independent of the fertility draw and marital status.

5.1 Calibration

We calibrate our model to approximate the data and empirical results from Gayle and Shephard (2019)

(GS from now on) at our baseline specification. The baseline tax system approximates the U.S. tax
21How much latitude the planner has to move consumption across spouses is an empirical question with currently little

data. In Section 5.2, we discuss how to potentially calibrate this function.
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system in 2006 using the following functional forms for after-tax income,

ATI∗(z) = λ∗z
1−ρ∗ , for ∗ ∈ {s,hh,ms},

ATImj(zf , zm) = λmj(zf + zm)1−ρmj .

where s is the system used for singles without children, hh (head-of-household) is used for singles

with children, ms (married filing separately) is for couples in disagreement and applied to each zi

separately, and mj (married filing jointly) is for couples in agreement.22 For our optimal taxation

exercises, we use a flexible tensor-product two-dimensional cubic spline specification.

Marriage-market signals w̃ are represented by educational attainment, and discretized in three

groups: High school and below, some college, and college and above. Agents’ productivities w are

drawn from a discretized log-normal distribution conditional on education w̃ and independent of

marriage or fertility status. Parameters are taken from GS and the distribution is discretized to 5

earning levels. Fertility transitions are calibrated using the 2006 American Community Survey (ACS).

At the baseline, we take the effect of transactions on disagreement consumption share, δ(x), to be

identically zero. The utility parameters and fixed cost minimize, with equal weights, the percentage

error between the model and data for married couples of

average working and housing time by gender and fertility;
own- and cross-elasticities of hours worked and home time by gender for a marginal change in

the tax system.

These statistics are reported in GS and the calibration fit is presented in the top two displays of Table 1.

The calibrated utility parameters are in Table 2. The marriage market shock variance, σ = 0.123, is

taken from GS. See Appendix C for more details about the calibration.

Remark. At the baseline, husbands control a larger fraction of consumption in disagreement for most

matches. On average, wives control only 33% of the disagreement after-tax income, which is the

average of ᾱ with weights µ.

22Under our specifications, it is always optimal for married couples to file jointly at the baseline. In the actual U.S. tax
system, there are some exceptional cases where filing separately generates lower taxes.
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hours worked, z
w

% model data

W
ife

kid 25.3 25.5
no kid 37.7 35.0

Hus
ba

nd kid 37.4 41.1
no kid 42.6 40.6

hours home, h
model data

35.8 36.2
25.1 23.9

21.1 22.4
17.2 17.3

hours worked elasticity, %∆z/w
%ATI

model GS

W
ife

own 0.24 0.54
cross -0.39 -0.32

Hus
ba

nd own 0.17 0.22
cross -0.15 -0.13

hours home elasticity, %∆h
%ATI

model GS

-0.17 -0.23
0.15 0.14

-0.10 -0.20
0.12 0.10

ᾱ

Husband
w̃1 w̃2 w̃3

W
if

e w̃1 0.31 0.22 0.11
w̃2 0.40 0.30 0.17
w̃3 0.60 0.50 0.34

ξ

Husband
w̃1 w̃2 w̃3

-0.46 -0.57 -0.64
-0.53 -0.46 -0.50
-0.56 -0.42 -0.26

µ

Husband
w̃1 w̃2 w̃3

0.15 0.04 0.02
0.07 0.09 0.05
0.03 0.05 0.17

Table 1: Baseline statistics, hours are in percentage of total available hours. Married couples: Left—Calibrated wife’s
disagreement consumption shares, ᾱ. Middle—mean of idiosyncratic shock, E[ε] = ξ. Right—Empirical baseline marriage
distribution, µ. All by education attainment: w̃1 = High school or below, w̃2 = Some college, w̃3 = College or above.

βk
1 βnk

1 βk
2 βnk

2 βℓ fck

0.144 0.162 0.013 0.042 0.224 $12,869
year

γk1 γnk1 γk2 γnk2 γℓ fcnk

1.337 1.01 2.761 1.775 2.148 $482
year

Table 2: Calibrated parameters.
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5.2 Counterfactual Tax Systems

We consider tax experiments to quantitatively evaluate how relevant is the theoretical threat-point

channel discussed previously. To make the experiments compatible with the standard tax policies, we

assume that taxes can depend on marital status, fertility, and gender but not on education attainment.

We highlight the effects through the internal threat-point channel which is unique to our household

model.

Targeted cash transfer A common feature of cash transfer policies is to target a specific household

member. Suppose the planner transfers a small amount dt directly to the wife of the couple with kids

and lowest productivity. Given transactions in disagreement x = (yf ,−zf , ym,−zm), assume that

disagreement consumption satisfies

c̄f = ᾱ(yf + ym) + (ᾱ+ δ)dt c̄m = (1− ᾱ)(yf + ym) + (1− ᾱ− δ)dt.

The parameter δ measures how much more of the targeted transfer is consumed by the wife relative to

the baseline sharing fraction, ᾱ.

Alternatively, if the transfer is not targeted, then disagreement consumption are

c̄f = ᾱ(yf + ym + dt) c̄m = (1− ᾱ)(yf + ym + dt),

which is equivalent to a targeted transfer with δ = 0. Notice that both targeted and not-targeted transfers

generate the same budget set. Hence, conditional on disagreement utilities, both are equivalent in

agreement.

We consider how much of an untargeted transfer a wife is willing to forgo to receive a targeted

transfer. That is, if we denote by WTP the willingness-to-pay, then we are a looking for a marginal

transfer dt such that(
∂uf
∂t

+
∂uf
∂ū

∂ū

∂t0

)
dt = (1−WTP)

(
∂uf
∂t

+
∂uf
∂ū

∂ū

∂tδ

)
dt,

where ∂ū
∂tδ

denotes the effect on the disagreement utilities of a marginal transfer for a given δ. For

households where the bargaining power is fixed or completely decided at the marriage stage, the

willingness to pay for a targeted transfer is always zero.

Table 3 reports how WTP varies with δ in our model.23 Implicitly, we are holding the marriage

market fixed, consequently, ᾱ is also held fixed. The range of δ is calibrated based on Almås et al.

(2018), which provides a randomized experiment of targeted versus non-targeted cash transfers with

wives in Macedonia. They find an average willingness to pay of 19% for targeted cash transfers relative
23We can show that WTP is proportional to δ

1+δ
.
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to a not-targeted cash transfer, which is replicated in our model with δ = 7.2%.24

WTP 0% 6% 12% 19% 24% 30% 36%

δ 0.0% 2.0% 4.2% 7.2% 9.7% 13.2% 17.3%

Table 3: Targeted vs non-targeted cash transfer. Highlighted replicates WTP from Almås et al. (2018)

Eliminate filing options The U.S. tax system allows married couples to choose between two tax

schedules, joint or separate, and filing jointly generates larger total after-tax earnings in almost all

cases. For unitary household models, where bargaining power does not depend on policy, or if the

bargaining power is completely determined in the marriage market, then eliminating the option to file

separately should have no effect.

In contrast, for our collective model, removing the option to file separately affects disagreement util-

ities, which has a small but meaningful impact on the average hours worked, hours home, participation,

and elasticities for market working hours and home working hours. The change in the disagreement tax

system also changes the equilibrium marriage market allocation, µ, and the equilibrium disagreement

consumption sharing rule, ᾱ. Detailed results are presented in Table 4.25

Optimal tax schedule Consider a planner with a utilitarian welfare function. We adapt the optimal

taxation exercise of Gayle and Shephard (2019) by computing the optimal (joint but gender-neutral) tax

schedule taking into account the marriage market impact, but keeping the disagreement tax schedule

fixed. This corresponds to only allowing changes in taxes to affect the disagreement state through ᾱw̃,

as defined in (8).

We consider the impact on welfare of two common restrictions on the tax schedule: income

splitting, T (zf , zm) = T (zf + zm), and separate taxation of individual labor earnings, T (zf , zm) =

T (zf ) + T (zm). Results for these experiments relative to the optimal joint tax schedules are reported

in the left panel of Table 5.

We then repeat the exercise, now allowing the planner to affect the sharing rule in disagreement.

More precisely, we allow the planner to influence the disagreement consumption,

c̄f =
(
ᾱw̃ + δ(w)

)
(yf + ym),

24As highlighted in Almås et al. (2018), “[t]he interpretation of a zero or negative WTP is not straightforward. A woman
living in a unitary household would report a zero WTP. A woman with a very high level of bargaining power, so that she is
effectively the sole decision-maker in the household, would also report a zero WTP. This would be equivalent to a unitary
model where household preferences coincide with the woman’s preference. A zero WTP could also be obtained in the case
of a woman with no bargaining power, perhaps because of social norms.”

25Interestingly, even though the effect of removing filing options within a couple always increases the labor supply of one
spouse and decreases the other’s, the overall effect is that both husbands and wives with children, on average, work less.
Conversely, both spouses in couples without children work more, on average.
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hours worked, z
w

% change

W
ife

kid -2.40
no kid 0.74

Hus
ba

nd kid -1.13
no kid 0.35

hours home, h
% change

0.97
-0.73

0.50
-0.46

hours worked elasticity, %∆z/w
%ATI

% change

W
ife

own -8.72
cross -9.73

Hus
ba

nd own -2.73
cross -5.15

hours home elasticity, %∆h
%ATI

% change

-4.50
-10.30

-2.94
-2.65

ᾱ
% change

Husband
w̃1 w̃2 w̃3

W
if

e w̃1 -0.64 -1.12 5.03
w̃2 -0.09 -0.69 1.37
w̃3 0.41 0.07 -0.51

µ
% change

Husband
w̃1 w̃2 w̃3

1.75 1.77 1.80
1.74 1.72 2.07
1.31 1.40 1.05

Table 4: Eliminate Filing Option. Married couples: Left—Calibrated wife’s disagreement consumption shares, ᾱ. Right—
Empirical baseline marriage distribution, µ. All by education attainment: w̃1 = High school or below, w̃2 = Some college,
w̃3 = College or above.

by choosing the function δ with the constraint that |δ(w)| ≤ 1%. This formulation aims to approximate

the optimal mechanism allowing the planner to have some freedom to affect the disagreement utilities.

However, because the consumption shares ᾱ readjust to clear the market, some of the distributive

effects from δ are undone by the marriage market. The results relative to the optimal joint tax schedule

with δ(w) = 0 are presented in the right panel of Table 5.

The joint tax schedule is approximated by a flexible two-dimensional cubic spline with 10 break-

points in each dimension. See Online Appendix C.2 for more details about the tax schedule specifica-

tion.

Remark. In our experiment, the ability to influence the disagreement utilities through δ is more

important when we restrict the tax schedule to be income splitting than when we restrict it to tax

separately. Since income-splitting tax schedules display positive jointness, while separate taxation
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has zero jointness, our experiment suggests that the evaluation of optimal jointness of a tax schedule

depends on the set of instruments available to the planner to influence the bargaining power within a

couple.

Optimal Tax Schedule
Tax schedule restriction Welfare Impact (%)

Income Splitting -5.4
Separate -7.8

Optimal Tax Schedule and Sharing Rule
Tax schedule restriction Welfare Impact (%)

No restriction 2.6
Income Splitting -1.4

Separate -6.2

Table 5: Welfare Impact measured as percentual change of government’s tax revenue to compensate for the change in welfare
relative to the optimal tax schedule with δ identically zero. At baseline, tax revenue corresponds to 14.8% of total pre-tax
labor earnings. Left panel restricts δ = 0; right panel restricts |δ| ≤ 1%.

6 Conclusion

This paper offers a framework for using mechanism design in an economy with multi-person house-

holds. We model household decision-making in such a way as to account for the empirical evidence –

Almås et al. (2018); Armand et al. (2020) – that rationalizes most current income support programs:

handing resources to the wife increases her influence in household choices.

Under a suitable definition of household types, the revelation principle applies. The taxation

principle, in contrast, is no longer valid. The latter finding is consequential for the use of tax filing

options. In our quantitative exercises, we find quantitatively relevant effects of removing these options

on hours worked at the market and home, related elasticities, the distribution of households, and

spouses’ command of resources.

Our approach relies on Lundberg and Pollak’s (1993) internal threat point idea while formalizing

its ‘general equilibrium’ version to nest all current static approaches for the determination of power

within the household. It also has predictions regarding aspects of policy, like the role of in-kind

distribution, that escape other approaches.
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A Section 3 proofs

Proposition (Revelation Principle). Let AM = {xM,uM} be the allocation implemented by M. Then

there exists a direct mechanism, D, such that spouses truthfully report their types, and AD = AM.

Proof of Proposition 1. Given a mechanism, M = {Si,x}, and its allocation, AM = {xM,uM}, we

divide the proof into two steps. First, we show that if threat points are fixed at ūM, then we can find a

direct mechanism that truthfully implements the equilibrium allocation in agreement. Then we show

that this direct mechanism implements the threat points truthfully.

Define a direct mechanism D = {S′
i,x

′} with S′
i = Ω2 × {a, d} and

x′(w, t,w′, t′) =


xM(w) if w = w′ and t = t′ = a

x̄M(w) if w = w′ and t = t′ = d

0 otherwise

.

Direct truthful mechanism given ūM. For any w, and report (w′, t′,w′′, t′′), if threat points are

given by ūM, define

V (x | w) = max
(uf ,um)∈U(x|w)

(
uf − ūf,M(w)

)(
um − ūm,M(w)

)
.
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Then, we have

V (x′(w, a,w, a) | w) = V (xM(w);w)
[1]

≥

max
{
V (xM(w′) | w), V (xM(w′′) | w), V (x̄M(w′) | w), V (x̄M(w′′) | w), V (0 | w)

}
≥ U(x′(w′, t′,w′′, t′′);w),

which implies that telling the truth is an equilibrium of the direct mechanism D and, by construction,

this equilibrium implements the same allocation as M. In [1] we use that xM(w) maximizes the

Nash-product V for household w.

Direct truthful mechanism implements ūM. Consider a couple in disagreement with productivities

w, to show that ūM is a Nash equilibrium of the disagreement game assume that one of the spouses,

say the wife, announces (w, d). Any different announcement from the husband will result in a zero

allocation, so it is optimal to announce (w, d) as well.

Proposition (Implementable Allocations). With differentiable utility functions, an allocation AM can

be implemented by another mechanism N if the equilibrium transactions are the same, xN(·) = xM(·),
and, for every household w, their disagreement utilities under N satisfy

ūN(w) = puM(w) + (1− p)ūM(w)

for some p ≤ 1. If ūM(w) ̸= uM(w), then this condition is also necessary.

Proof of Proposition 2. Given a couple w and a mechanism M, suppose another mechanism N

implements the same transactions as M and induces disagreement utilities in the (half)line defined

by uM(w) and ūM(w). Then, by Lemma 11, the utility division for N and M are the same, that is

uN(w) = uM(w).

In the other direction, if transactions differ, then N and M have different allocations by definition.

So, assume they have the same transactions, xN(·) = xM(·). Given a couple w, the utility frontier

of U(xM(w) | w) is smooth if we have differentiable utility functions; therefore, by Lemma 11, the

only way N can implement the same utility split as M is if disagreement utilities lie in the line defined

by uM(w) and ūM(w).

Proposition (Roberts (1984)). A set of transactions {x(w)}w is implementable by a tax-schedule

mechanism T if and only if it satisfies VT(x(w);w) ≥ VT(x(w
′);w) for any w and w′.

Proof of Proposition 3. In our notation, Roberts (1984) shows that a set of transactions {x(w)} is

implementable by a tax-schedule mechanism T if and only if it satisfies
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1. (Decentralization) The transaction for a household only depend on their type, not on other

households’ types.

2. (Horizontal equity) Two households with the same type have the same transactions.

3. (Vertical equity) VT(x(w);w) ≥ VT(x(w
′);w) for any w and w′.

Conditions 1 and 2 hold by construction; therefore, the characterization in the proposition follows.

Corollary (Taxation principle for unitary households). Suppose threat points are exogenous, in the

sense that for any mechanism M we have ūM(w) = ū(w). Then, for any M, there is an income-

pooling tax-schedule mechanism T that implements the allocation AM = {xM(w),uM(w)}w.

Proof of Corollary 4. By Proposition 3, a tax-schedule mechanism T implements the transactions

{xM(w)} if, for any w and w′,

VT(xM(w);w) ≥ VT(xM(w′);w). (9)

Consider the following tax schedule

T (z) =

{zM(w)− yM(w)} if z = zM(w)

∅ otherwise

By assumption, T and M generate the same disagreement utilities ū(w), so VT(xM(w′);w) =

VM(xM(w′);w) for any w and w′. Also, because M implements the transactions {xM(w)} we

know that

VM(xM(w);w) ≥ VM(xM(w′);w),

and we conclude that T implements the transactions {xM(w)}.

Furthermore, since M and T generate the same threat-points and the same transactions, they

generate the same utilities in agreement. So, T implements the same allocation as M. Since the

utility set does not depend on who earns the income, we can always take T to be an income-pooling

tax-schedule mechanism.

Corollary (Partial taxation principle for transferable utility). Suppose the utility function is quasi-linear

in consumption, v(c, l) = c + h(l). Then, for any mechanism M, there is an income-pooling tax-

schedule mechanism T that implements the set of transactions {xM(w)}w. However, this tax-schedule

will not, in general, implement the same utilities, {uT(w)}w ̸= {uM(w)}w.

Given a tax-schedule T̃ that implements the transactions {xM(w)}w, it implements the same
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utilities as the mechanism M if and only if, for every w,

uf,M(w)− ū
f,T̃

(w) = um,M(w)− ū
m,T̃

(w). (10)

Proof of Corollary 5. The quasi-linear specification implies that the optimal transactions in agreement

are independent of threat-points. Therefore, by Proposition 3 and the argument in the proof of

Corollary 4, there is an income-pooling tax-schedule mechanism T that implements the transactions

{xM(w)}w.

Given transactions (yf ,−zf , ym,−zm), the household in agreement solves

max
cf

(
cf − h

(
1−

zf
wf

)
− ūf

)(
yf + ym − cf − h

(
1−

zf
wf

)
− ūf

)
.

The first-order condition with respect to cf gives

cf − h

(
1−

zf
wf

)
− ūf = cm − h

(
1−

zf
wf

)
− ūf .

So, any tax-schedule mechanism that implements transactions {xM(w)}w, will implement the same

utilities if and only if it satisfies

uf,M(w)− ū
f,T̃

(w) = um,M(w)− ū
m,T̃

(w).

Proposition. Given a mechanism M, suppose that the disagreement labor earnings, z̄f,M(·) and

z̄m,M(·), are both one-to-one, that is we can recover w from each spouse separately, then there is a

two-schedule tax system that implements AM.

Proof of Proposition 6. First, conditional on threat points, by Corollary 4, we can find a tax-schedule

T , such that the tax-schedule mechanism induced by it, T, implements the transactions {xM(w)}.

Second, define a fall-back schedule T so that

T (z) =

{(z̄f,M(w)− ȳf,M(w), z̄m,M(w)− ȳm,M(w))} if z = (z̄f,M(w), z̄m,M(w))

∅ otherwise

Because z̄i,M(·) are one-to-one, if a spouse from a couple w uses the fall-back schedule T and

chooses earnings z̄i,M(w), then the only available transaction for the couple is (x̄f,M(w), x̄m,M(w)).

Therefore T induces the same disagreement utilities as M. Furthermore, because all transaction in T

were feasible in M, the fall-back schedule does not affect the agreement allocation.
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Proposition. Given a mechanism M and any possible transaction for this mechanism, x̄ ∈ XM,

there is a mechanism N that changes the w-household’s disagreement utility to ūN(w) = u(x̄ | w),

without affecting the other households’ allocations: for all w′ ̸= w, xN(w
′) = xM(w′) and

uN(w
′) = uM(w′).

Proof of Proposition 7. Given x̄ ∈ XM, let ū = ū(x̄ | w). The proof of proposition 1 shows that

we can construct a direct mechanism N = {Θ2 × {a, d},x} such that s̄∗f,N(w) = s̄∗m,N(w) = (w, d)

as long as the allocation function xN(·) punishes lies harshly. In particular, we can implement x̄ in

disagreement for couple w without affecting the disagreement choices of any other couple.

For a couple w′ ̸= w, if their disagreement utility are the same, and if transaction x̄ was feasible

at the original mechanism M, that is, if x̄ ∈ XM, then their optimal allocation is unchanged and we

get xN(w
′) = xM(w′).

Proposition. Given a mechanism M, if ū can be implemented as disagreement utility for a w-

household without affecting the other households’ allocations, then there is a feasible transaction

x ∈ X such that ū = ū(x | w) and x ̸> xM(w′) for all w′ ̸= w.

Proof of Proposition 8. For any w′, VM(x;w′) is strictly increasing in x.26 Therefore, a couple w′

would change their equilibrium allocation if x > xM(w′) was feasible.

A.1 Lemmata

Lemma 9. Assume that utilities representing people’s preferences are of the form ui(c, l) = c+ h(l)

for h(·) strictly increasing and concave. Then, optimal transactions are independent of threat points.

Proof. For transactions x, define hi = h(1− zi/θi), i = f,m. Given these transaction the household

solves

max
cf

(cf + hf − ūf ) (αy − cf + hm − ūm) ,

for y = yf + ym.

At the optimum, for the maximization problems above, we have

cf + hf − ūf = αy − cf + hm − ūm,

and the value of the program, for a given x is, therefore,

1

4

[
αy + (hf − ūf ) + (hm − ūm)

]2
.

26With respect to the component-wise partial order on X2.
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It follows that transaction x is preferred to x′ if and only if[
αy + (hf − ūf ) + (hm − ūm)

]2
≥
[
αy′ + (h′f − ūf ) + (h′m − ūm)

]2
,

which is equivalent to αy + hf + hm ≥ αy′ + h′f + h′m

Lemma 10. Given a mechanism M, assume

VM(xM(w);w) = VM(x′;w)

for some x′ such that

uM(w) /∈ argmax
u∈U(w|x′)

(
uf − ūf,M(w)

)(
um − ūm,M(w)

)
.

That is, x′ gives the same Nash product but generates a different split in utilities.

Assume that there is another mechanism N that satisfies

ūN(w) = puM(w) + (1− p)ūM(w)

for p ∈ (0, 1). That is, N moves the disagreement utility of M closer to its agreement utility.

Then,

UN(xM(w);w) > UN(x
′;w).

Under the disagreement utilities induced by N, the original transaction is strictly preferred to x′.

Proof. Without loss, let the spouses’ utilities at the original threat point be (0, 0). Let (uf , um) be the

corresponding agreement solution. We know, in this case, that ufum ≥ u′fu
′
m for any feasible utility

pair (u′f , u
′
m).

Using that the function f(x) = (x− p)
(
1
x − p

)
is uniquely maximized at x = 1 it follows that if

uf ̸= u′f , then (
u′f
uf

− p

)(
u′m
um

− p

)
≤

(
u′f
uf

− p

)(
uf
u′f

− p

)
<
(
1− p2

)
if u′f > puf .

Multiply both sides by ufum to get

(u′f − puf )(u
′
m − pum) < (1− p)2ufum = (uf − puf )(um − pum)
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Lemma 11. Given two mechanisms M and N that implement the same transactions, xM(w) =

xM(w) for all w, then N implements the same utilities as M if there is p ≤ 1 such that

ūN(w) = puM(w) + (1− p)ūM(w). (11)

and the utility possibility set U(xM(w) | w) is smooth and convex. This condition is also necessary if

ūM(w) ̸= uM(w).

Proof. The proof follows readily from the analysis in the proof of Lemma 10. Alternatively, notice that

we can assume without loss of generality that u := uf,M(w) = um,M(w) by re-scaling the utilities.

Then, by symmetry and the assumptions on the utility possibility set, the Nash solution is (u, u) if

and only if threat points are symmetric. Therefore, threat points must be of the form (γu, γu) with

γ ≤ 1 to implement the Nash solution.

Let the threat point for M (after re-scaling) be given by (γMu, γMu) and suppose (11) is valid,

then

ūN = p(u, u) + (1− p)γM(u, u).

Therefore ūN is of the form (γNu, γNu) for γN = p+ (1− p)γM ≤ 1.

Moreover, if γM < 1, then any γ ≤ 1 can be written as p+ (1− p)γM for p = γ−γM
1−γM

≤ 1.

Lemma 12. For a given mechanism M, assume that there is another mechanism N such that it induces

the same equilibrium allocation as M, for a subset Θ> ⊂ Θ2 it increases disagreement utilities as in

Lemma 10, and, for the rest, it does not affect the disagreement utilities.

Define the set Θ< ⊂ Θ2 of households such that for M their allocation is either envied, in the

sense of a binding incentive-compatibility constraint, by no one or only envied by households in the set

Θ>. Then, one must be true: No transactions for households in Θ< are distorted, or; the allocation

xM(·) is constrained inefficient.

Proof. By Lemma 10, households in Θ< are envied by no one for the mechanism N. Therefore, either

their allocations are not distorted or they can be improved while respecting incentive compatibility,

which implies that xN(·) = xM(·) is constrained inefficient.

B Marriage Market

B.1 Theoretical Extensions

Definition. A mechanism, M, consists of, for each ex-ante w̃ couples types, message spaces, SM(w̃),

and outcome functions, xw̃,M : W̃ 2 × SM(w̃)2 7→ X ×X mapping messages spouses’ messages into

transactions; message spaces SM(w̃f ) and outcome functions, xfw̃f ,M
: W̃ × SM(w̃f ) 7→ X mapping
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massages to transactions for each ex-ante type, w̃f , of single woman, and; message spaces SM(w̃m)

and outcome functions, xmw̃m,M : W̃ × SM(w̃m) 7→ X mapping massages to transactions for each

ex-ante type, w̃m, of single man.

To adapt the results from Section 3 we expand the definition of a multi-person household type to

τi = (θ, t) where θ = (wf , wm, w̃f , w̃m), t ∈ {a, d}.

Definition. A direct mechanism, D, is a mechanism for which the message for each ex-ante household

type w̃, is the set of possible types, SD := W 2×{w̃}2×{a, d}, Sf,D := W ×{w̃f} for each ex-ante

type of single woman, w̃f , and Sm,D := W × {w̃m} for each ex-ante type of single woman, w̃m.

The next Proposition states that a direct mechanism that only uses the information produced by

individuals after the marriage market stage, induces the same marriage market equilibrium, which is

the content of Proposition 13, below.

Proposition 13 (Revelation Principle). Let AM =
{
xM, xfM, xmM,uM, µM, µf

M, µm
M

}
be the alloca-

tion implemented by M. Then, there exists a direct mechanism, D, such that spouses truthfully report

their types, and AD = AM.

Proof. See Appendix A.

Proof of Proposition 13. Let AM =
{
xM, xfM, xmM,uM, µM, µf

M, µm
M

}
be the allocation imple-

mented by a mechanism M. This means that given the choices made at the marriage market stage

regarding the mapping ū, the threat points that arise as equilibria of the disagreement game induce, for

every couple, θ, xM(θ) as the household’s transactions and uM as the utilities attained.

Let us take ū and µ as given. Expanding the proof of Proposition 1 to accommodate singles using

standard arguments it is immediate that there is a direct mechanism D that induces the same allocation

xD(θ) = xM(θ) and uD(θ) = uM(θ).

Now, consider the marriage market stage. Under the direct mechanism, the same utility transfers

are available if the same ū are chosen. Because the planner selects the disagreement equilibrium,

the set of feasible expected utility pairs allocations is not expanded by the direct mechanism either.

Since choice sets at the marriage market stage did not change, the equilibrium under M remains an

equilibrium under D.

An allocation from the direct mechanism D,

AD =
{
xD, x

f
D, x

m
D ,uD, µD, µ

f
D, µ

m
D

}
,

with xD(θ) = xD(θ, a,θ, a) for all θ, xf (θf ) = x
f
D(θf ) for all θf , and xm(θm) = xmD (θm) for all

θm, is incentive feasible if:
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i) Incentive Compatibility Singles — For all θf , θf ∈ argmaxs v(x
f
D(s), θf ); For all θm, θm ∈

argmaxs v(x
m
D (s), θm)

ii) Incentive Compatibility (in disagreement) — For every w-households, truth-telling is a Nash-

equilibrium for the disagreement game:

(θ, d) ∈ argmax
θ′, t′

ūf
(
xD(θ

′, t′,θ, d);θ
)

and

(θ, d) ∈ argmax
θ′, t′

ūm
(
xD(θ, d,θ

′, t);θ
)
.

iii) Incentive Compatibility (in agreement) — Given the disagreement utilities, uD(θ), for every

θ-households truth-telling is optimal in the agreement state:

(θ, a,θ, a) ∈ argmax
θ′,t′,θ′′,t′′

VD(xD(θ
′, t′,θ′′, t′′);θ),

where

VD(x;θ) := max
(uf ,um)∈U(x;w)

(
uf − ūfM(θ)

)(
um − ūmM(θ)

)
is the θ-household Nash-bargaining objective function over transactions instead of utilities.

iv) Feasibility — G
(∑

θ

∑
i=f,m xi,D(θ)µD(θ) +

∑
i=f,m

∑
θi
xi,D(θi)µ

i
D(θi)

)
≤ 0.

v) Endogeneity of µ — For all θ,

µD(θ) = µD(w, w̃) = Pr(w|w̃)µ̄D(w̃),

for all θf ,

µf
D(θf ) = µf

D(wf , w̃f ) = Pr(wf |w̃f )µ̄
f
D(w̃f ),

and, for all θm,

µm
D (θm) = µm

D (wm, w̃m) = Pr(wm|w̃m)µ̄m
D (w̃f ),

where µ̄D(·, ·), µ̄f
D(·), and µ̄m

D (·) are an equilibrium of the marriage market.

Remark. In our description of a mechanism, we have allowed marriage market signals, w̃, to

be private information. If the planner can observe the signals, which are public for the marriage

market participants, then we must restrict the Direct Mechanism message space to force reports

regarding w̃ to be truthful.

The definition is very similar to the one in Section 3. The novel issues are the inclusion of singles –

item (i) – and its consequence to the resource constraint – item (iv) –, the endogeneity of the distribution
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of couples – item (v) –, and the redefinition of married agents’ types now depend not only on (w, t)

but also on w̃ through its potential impact on the mapping from transactions to disagreement utilities,

which is the channel through which expected utility is transferred at the marriage market stage.

B.2 Equilibrium Existence

This section outlines sufficient conditions for a marriage market equilibrium in our general model from

Section 4. The argument relies on re-framing the marriage market to fit the framework developed by

Galichon et al. (2019).

Recall that, at the marriage stage, couples receive a signal w̃, which is informative about their

after-marriage productivity, w, and must decide on a disagreement function ū(x | w) to be used after

marriage in case of disagreement. The set of available disagreement functions is denoted by U .

Given a mechanism M, the set of possible expected utilities for a couple with signal w̃ is defined

as the expected agreement utility for all possible disagreement utility functions, ū ∈ Ū ,

EUM(w̃) :=
{
v ∈ U2 | There is ū ∈ U such that v ≤ E [uM(w | ū) | w̃]

}
.27

Then, following Galichon et al. (2019), we define the bargaining set for a couple (f,m) with

signal w̃ and idiosyncratic shocks εf and εm as

B
f,m
M = EUM(w̃)⊕

{(
εf (w̃m), εm(w̃f )

)}
,

where ⊕ is the Minkowski sum.

We restate the assumptions from Galichon et al. (2019) for completeness.

Assumption B.1.

1. Assume that the bargaining set Bf,m
M satisfies

(a) closed and nonempty;

(b) lower comprehensive, if v′f ≤ vf , v′m ≤ vm and (vf , vm) ∈ B
f,m
M , then (v′f , v

′
m) ∈ B

f,m
M ;

(c) bounded above, if vnf
n→∞→ ∞, then for any vm ≥ −∞ there is N such that n ≥ N implies

(vnf , vm) ̸∈ B
f,m
M , and similarly for vnm → ∞.

2. The distributions of idiosyncratic shocks εf and εm are iid with full support in R and absolutely

continuous with respect to the Lebesgue measure.

3. Let ∂EUM(w̃) denote the frontier of the feasible expected utility set, then

27The inequality v ≤ E [uM(w | ū) | w̃] should be taken element by element.
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(a) for every w̃f , we have that

max vf − vm subject to (vf , vm) ∈ ∂EUM(w̃f , w̃m)

is infinity for every w̃m or is finite for every w̃m.

(b) for every w̃m, we have that

max vm − vf subject to (vf , vm) ∈ ∂EUM(w̃f , w̃m)

is infinity for every w̃f or is finite for every w̃f .

Proposition 14 (Galichon, Kominers, and Weber (2019)). Under assumption B.1 there is a unique

equilibrium to the marriage market. That is, for each w̃ there is a disagreement utility function ūw̃

such that there are unique utilities28

vM(w̃) ≤ E[uM(w | ūw̃) | w̃], (12)

which clear the marriage market,29

Df,M(w̃ | vM) = Dm,M(w̃ | vM).

Remark. If the set of disagreement utility functions, Ū , is too restrictive then the inequalities in (12)

may be strict. For example, consider the case where Ū contains a single element; In this case, we

have a non-transferable utility model (at the marriage stage). Similarly, some mechanisms may restrict

transfers too much and preclude the existence of an equilibrium with equality in (12).

28Here ≤ should be taken element by element.
29Df,M(w̃f , w̃m | v) = P

(
vf (w̃f , w̃m)+εf (w̃m) = max vf (w̃f , w̃

′
m)+εf (w̃

′
m)

)
, and similarly for Dm,M(w̃f , w̃m |

v).
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C Online Appendix: Computing the Optimal Tax System

C.1 Baseline

The baseline tax system is based on the federal tax system brackets for 2006. The tax rates for each

bracket are calibrated to match the marginal tax rate in Heathcote et al. (2017) which approximates the

statutory taxes prevalent in the period. The after-tax income schedule for each household in a group is

ATI(Y ) = λY 1−ρ.

The tax rates and tax brackets we use are presented in Table 6.

tax rate (%) -14.77 13.66 28.52 36.28 42.89 47.81

Single 0 - 7.55 7.55 - 30.65 30.65 - 74.20 74.20 - 154.8 154.8 - 336.55 336.55 - ∞
Married Jointly 0 - 15.10 15.10 - 61.30 61.30 - 123.70 123.70 - 188.45 188.45 - 336.55 336.55 - ∞

Married Separate 0 - 7.55 7.55 - 30.65 30.65 - 61.85 61.85 - 94.26 94.26 - 168.28 168.28 - ∞
Head-of-Household 0 - 10.75 10.75 - 41.05 41.05 - 106.00 106.00 - 171.65 171.65 - 336.55 336.55 - ∞

Table 6: Tax brackets (in $1000) for each tax rate of our baseline tax system.

C.2 Cubic Spline Approximation

Given breakpoints 0 = τ1 < · · · < τn, define the piecewise cubic function

Pi(x) = c1,i + c2,i(x− τi) + c3,i(x− τi)
2 + c4,i(x− τi)

3 τi ≤ x ≤ τi+1

with

c1,i = Pi(τi) = g(τi)

c2,i = P ′
i (τi) = si

c3,i =
P ′′
i (τi)

2
=

[τi, τi+1]g − si
∆τi

− c4,i∆τi

c4,i =
P ′′′
i (τi)

6
=

si + si+1 − 2[τi, τi+1]g

∆τ2i

This function interpolates the points g(τ1), . . . , g(τn).

If we set for i = 2, . . . , n− 1

si−1∆τi + si2(∆τi−1 +∆τi) + si+1∆τi−1 = bi

with

bi = 3(∆τi[τi−1, τi]g +∆τi−1[τi, τi+1]g),

a



for i = 1

s1∆τ2 + s2(∆τ2 +∆τ1) =
(∆τ1 + 2(∆τ1 +∆τ2))∆τ2[τ1, τ2]g +∆τ21 [τ2, τ3]g

∆τ2 +∆τ1
,

and for i = n

sn−1(∆τn−1 +∆τn−2) + sn∆τn−2 =

∆τ2n−1[τn−2, τn−1]g + (2(∆τn−1 +∆τn−2) + ∆τn−1)∆τn−2[τn−1, τn]g

∆τn−1 +∆τn−2
,

we have a cubic spline. De Boor and De Boor (1978)

We can rewrite in matrix notation,

Ms = b

where

M =



∆τ2 ∆τ2 +∆τ1 0 0 . . . 0 0 0

∆τ2 2(∆τ2 +∆τ1) ∆τ1 0 . . . 0 0 0

0 ∆τ3 2(∆τ3 +∆τ2) ∆τ2 . . .
. . . . . .

...
...

...
. . . . . . . . . . . . . . . 0

0 0 0 . . . 0 ∆τn−1 2(∆τn−2 +∆τn−1) ∆τn−2

0 0 0 . . . 0 0 ∆τn−2 +∆τn−1 ∆τn−2


And

b = HKDg

where

Dn−1×n =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −1 1

 ,

Hn×n−1 =



(3∆τ1+2∆τ2)∆τ2
∆τ2+∆τ1

∆τ21
∆τ2+∆τ1

0 . . . 0

3∆τ2 3∆τ1 0 . . . 0

0 3∆τ3 3∆τ2
. . .

...
...

. . . . . . . . . 0

0 . . . 0 3∆τn−1 3∆τn−2

0 . . . 0
∆τ2n−1

∆τn−1+∆τn−2

(3∆τn−1+2∆τn−2)∆τn−2

∆τn−1+∆τn−2


,
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and

Kn−1×n−1 = diag(∆τ−1
i ).

With this, we can compute

c1 = Tg = C1g

c2 = T s = TM−1HKDg = C2g

c3 = K
(
3In−1 − (T +R)M−1H

)
KDg = C3g

c4 = K2
(
RM−1H − 2In−1

)
KDg = C4g

where

Rn−1×n =


1 1 0 . . . 0

0 1 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 1 1


and

T n−1×n =
[
In−1 0n−1×1

]
Two-dimensional tensor product cubic spline Consider two-dimensional breakpoints {τ1, . . . , τn}×
{τ1, . . . , τn}, indexed by i and j, which interpolates the points

GT
n×n =

[
g1, . . . ,gn

]
.

For each j, define the coefficients

cj = Cgj

where

C4(n−1)×n =


C4

C3

C2

C1


Then,

c4(n−1)×n =
[
c1, . . . , cn

]
= CGT

Finally, the two-dimensional spline coefficients are given by

CGCT
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Therefore, we can compute the derivative as

(C ⊗C)vec(DG)

Define CC = (C ⊗C).

Derivative of utility with respect to tax schedule If we approximate the after-tax income by

selecting G values to interpolate at income breakpoints {τ1, . . . , τn} × {τ1, . . . , τn}, we can compute

the derivative of the after-tax income at zf , zm in agreement by following the steps

1. Map (zf , zm) to the breakpoints by

τi ≤ zf < τi+1, τj ≤ zm < τj+1

2. From the matrix of coefficients, the relevant terms are

((n− 1)(k1 − 1) + i, (n− 1)(k2 − 1) + j), for k1, k2 ∈ {1, 2, 3, 4},

which are associated to the polynomial terms

(zf − τi)
4−k1(zm − τk)

4−k2

3. Alternatively (and more relevantly for the derivative), we can write

idxk1,k2 = (n− 1)(k1 − 1) + i+ 4(n− 1)((n− 1)(k2 − 1) + j − 1)

or, we can write

idx =
[
idx1,1, idx1,2, . . . idxk1,1, idxk1,2, . . . idx4,3, idx4,4

]T
that is, we read the coefficients row-by-row.

4. Then we can find the derivative of ATI with respect to a change in G as

4∑
k1,k2=1

(zf − τi)
4−k1(zm − τj)

4−kjCC(idxk1,k2 , : )vec(DG)

or

(zf − τi)
4−k1 · (zm − τj)

4−k2CC(idx, : )vec(DG)
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where

kT
1 =


1

2

3

4

⊗


1

1

1

1

 and kT
2 =


1

1

1

1

⊗


1

2

3

4

 ,

5. therefore we have that

ATI(zf , zm) = (zf − τi)
4−k1 · (zm − τj)

4−k2CC(idx, : )

and

∂fATI(zf , zm) = (4− k1) · (zf − τi)
3−k1 · (zm − τj)

4−k2CC(idx, : )

∂mATI(zf , zm) = (4− k2) · (zf − τi)
4−k1 · (zm − τj)

3−k2CC(idx, : )

From piecewise polynomial (PP) to B-spline The PP (piecewise-polynomial) representation above

is better to evaluate derivatives. However, the B-spline representation has advantages when we want to

impose shape constraints on our spline.

From the PP-spline Pi(x) in the previous section, we can rewrite it in the B-form by defining the

sequence of knots t1 ≤ t2 ≤ · · · ≤ tn+6,

t1 = t2 = t3 = t4 = τ1 < τ2 = t5 < · · · < τn−1 = tn+2 < τn = tn+3 = tn+4 = tn+5 = tn+6

Define t = {t1, . . . , tn+6}.

and coefficients

αi = Pi(ti+2) +
∆ti+2 −∆ti+1

3
P ′
i (ti+2)−

∆ti+2∆ti+1

6
P ′′
i (ti+2)

Then, there is a unique set of functions Bi,4,t, the spline basis functions, such that De Boor and

De Boor (1978)

Pj(x) =

j∑
i=j−3

αiBi,4,t(x), tj ≤ x ≤ tj+1 and j ∈ {4, . . . , n+ 2}

Therefore, given the coefficients c1, c2, c3, and c4 extended to define ck,n as well,30 we can find

the coefficients α by

α = A1c1 +A2c2 +A3c3 +A4c4,

30That is,
c1,n = gn c2,n = sn c3,n = c3,n−1 + 3c4,n−1∆τn−1 c4,n = c4,n−1.
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where

A1 =



1 0 . . . 0 0

1 0 . . . 0 0

0 1
. . .

...
...

... 0
. . . 0

...
...

...
. . . 1 0

0 0 . . . 0 1

0 0 . . . 0 1


=


eT1

In

eTn

 .

A2 =
1

3



0 0 . . . 0 0

∆τ1 0 . . . 0 0

0 ∆τ2 −∆τ1
. . .

...
...

... 0
. . . 0

...
...

...
. . . ∆τn−1 −∆τn−2 0

0 0 . . . 0 −∆τn−1

0 0 . . . 0 0


=



0T

∆τ1e
T
1

Dn−2×n−1∆τ

−∆τn−1e
T
n

0T



A3 = −1

3



0 0 . . . 0 0

0 0 . . . 0 0

0 ∆τ2∆τ1
. . .

...
...

... 0
. . . 0

...
...

...
. . . ∆τn−1∆τn−2 0

0 0 . . . 0 0

0 0 . . . 0 0


A4 = 0

Putting everything together, define

A(n+2)×4n =
[
A4 A3 A2 A1

]
then, for the one-dimensional case, we have

α = AC̃g,
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and for the two-dimensional case, we have

α = AC̃GC̃
T
AT

and

vec(α) = (AC̃)⊗ (AC̃)vec(G)

If the after-tax income is written as cubic B-spline (tensor) with knots {ti}, then

ATI(zf , zm) =
∑
i,j

αi,jBi,k(zf )Bj,k(zm)

with k = 4 (the spline order).

Then, the derivative is given by

∂fATI(zf , zm) =
∑
i,j

αi,j(k − 1)

(
Bi,k−1(zf )

ti+k−1 − ti
−

Bi,k−1(zf )

ti+k−1 − ti

)
Bj,k(zm),

which can be rearranged as

∂fATI(zf , zm) = (k − 1)
∑
i,j

(
αi,j − αi−1,j

ti+k−1 − ti

)
Bi,k−1(zf )Bj,k(zm).

This implies that we can force monotonicity by imposing

αi,j − αi−1,j ≥ 0 ∀i, j,

and, by changing the roles of i and j,

αi,j − αi,j−1 ≥ 0 ∀i, j.

Imposing that the function is concave is harder (the B-spline representation does not help here).

However, it is simple to enforce concavity in each dimension separately.

By applying the above reasoning again, we have that

∂ffATI(zf , zm) = (k − 1)(k − 2)
∑
i,j

1

ti+k−2 − ti

(
αi,j − αi−1,j

ti+k−1 − ti

− αi−1,j − αi−2,j

ti+k−2 − ti−1

)
Bi,k−2(zf )Bj,k(zm)

g



We can impose concavity (or progressivity) on each dimension separately by imposing that

αi,j − αi−1,j

ti+k−1 − ti
− αi−1,j − αi−2,j

ti+k−2 − ti−1
≤ 0 ∀i, j,

and
αi,j − αi,j−1

tj+k−1 − tj
− αi,j−1 − αi,j−2

tj+k−2 − tj−1
≤ 0 ∀i, j.

Using that k = 4, and defining ∆3ti = ti+3 − ti we have

∆3ti−1αi,j − (∆3ti−1 +∆3ti)αi−1,j +∆3tiαi−3,j ≤ 0 ∀i, j,

and

∆3tj−1αi,j − (∆3tj−1 +∆3tj)αi,j−1 +∆3tjαi,j−3 ≤ 0 ∀i, j

h
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